

School of Dentistry / Yr Ysgol Ddeintyddiaeth Identification of Gene Expression Profiles Underlying QBIOTICS **Preferentially Stimulated Keratinocyte Wound Healing Responses and Re-epithelialisation by Novel Epoxy-Tigliane Pharmaceuticals**

<u>Rachael L. Moses^{1,2}, Glen M. Boyle³, Paul Reddell⁴, Robert Steadman^{2,5}, Ryan Moseley^{1,2}</u>

¹Wound Biology Group, Tissue Engineering & Reparative Dentistry, School of Dentistry, College of Biomedical & Life Sciences, Cardiff University. ²Cardiff Institute of Tissue Engineering & Repair (CITER), Cardiff University. ³Drug Discovery Group, Cancer & Cell Biology Division, Queensland Institute of Medical Research, Queensland, Australia. ⁴QBiotics Ltd., Queensland, Australia. ⁵Institute of Nephrology, School of Medicine, College of Biomedical & Life Sciences, Cardiff University.

Introduction

- The novel epoxy-tiglianes, 12-tigloyl-13-(2-methylbutanoyl)-6,7-epoxy-4,5,9,12,13,20hexahydroxy-1-tigliane-3-one (EBC-46) & a less active related compound, 12-tigloyl-13-(2-methylbutanoyl)-5,6-epoxy-4,5,9,12,13,20-hexahydroxy-1-tigliane-3-one (EBC-211), occur within seeds of the Fontain's Blushwood Tree, indigenous to Queensland's tropical rainforest¹.
- EBC-46 is currently being developed as an anti-cancer agent by Australian biotechnology company, QBiotics (www.qbiotics.com/), for the intra-lesional treatment of cutaneous & sub-cutaneous tumours in humans & animals².
- In veterinary clinical trials, exceptional dermal wound healing responses, characterised by accelerated re-epithelialisation, closure & reduced scarring, have been consistently observed following tumour ablation by EBC-46².
- Such observations are reminiscent of the rapid re-epithelialisation rates evident during

Results

early gestational, foetal skin or oral mucosal healing³⁻⁴, leading to the potential of EBC-46 & EBC-211 being used to promote dermal re-epithelialisation during impaired healing chronic wounds or burn injuries.

Aims & Objectives

As little is known how epoxy-tiglianes promote wound re-epithelialisation in treated skin, we examined the effects of EBC-46 & the lesser active analogue (EBC-211), on keratinocyte proliferation & migration *in vitro* & the underlying mechanisms of action.

Materials & Methods

Cell Proliferation

EBC-46 (µg/m/

EBC-211 (µg/ml)

controls.

Significant

population

controls.

Significant

@ 0.001-0.1µg/ml.

@ 0.001-10µg/ml.

HACAT Wound Re-population

EBC-46 accelerates migration

Full wound closure @ 0.001-

0.01µg/ml EBC-46, vs untreated

0.001µg/ml (24 & 48h) & 0.01-

0.1µg/ml (48h), vs. controls

EBC-211 accelerates migration

Full wound closure @ 0.001-

0.1µg/ml EBC-211, vs untreated

population evident at 0.001-

0.1µg/ml (24 & 48h) & 1-10µg/ml

(48h), vs. controls (*N*=3,

*p<0.05, **p<0.01, ***p<0.001).

wound

(*N*=3, **p<0.01, ***p<0.001).

wound

evident

re-

at

re-

Microarrays

- visualization through hierarchical clustering of genes differentially expressed ≥2 fold by HACATs (*n*=4 biological repeats).
- Cultured in the presence of 0.001µg/ml, 0.1µg/ml or 10µg/ml EBC-46 (A) or EBC-211 (B); & compared to untreated controls at 24h & 48h.
- Data from the 4 biological repeats were grouped for combined analysis between treatments & vs the

Red = up-regulated genes, **Green** = down-regulated genes.

Α	Control vs EBC-46,				
Gene	0.001 24h	0.001 48h	0.1 48h	10 24h	10 48h
KRT13		5.3	5.3		6.3
KRT15		4.6	4.6	-2.8	5.7
KRT9		2.1	2.1		2.2
KRT81	2.3				
KRT16		-4.3	-4.3	-3.1	-4.1
KRT17		-4.1	-4.1	-3.1	-4.0
KRT6B		-3.2	-3.2		-3.5
KRT17P3		-4.3	-4.3	-2.5	-4.2
Cyclin B2		4.1	4.1		4.2
Cyclin A2		3.0	3.0		3.0
Cyclin B1		2.7	2.7		2.7
CDKN3		3.3	3.3		3.2
CDKN1A		-2.0	-2.0	-3.2	-2.2
MMP-1		5.8	5.8	2.5	5.1
GINS2	2.5	2.8	2.8	2.4	2.9
POLE2	2.4			2.41	
UBE2C		3.8	3.8		4.3
PTHLH	2.7	2.5	2.5	2.8	2.4
IL-6		-5.3	-5.3	-2.0	-7.2
IL-8		-5.6	-5.6	-4.4	-8.1
IL-32		-6.7	-6.7		-8.6
IFNB1	-3.8	-4.3	-4.3	-4.2	-5.0

Conclusions

- Both EBC-46 & EBC-211 significantly increase HACAT proliferative & wound re-population responses *in vitro*.
- This study has also identified the genes principally involved in mediating enhanced keratinocyte proliferative & migratory responses following epoxy-tigliane treatment, which potentially occur by similar mechanisms to the favourable rapid healing events observed with epithelial wounds in the oral mucosa³⁻⁴.
- Such findings help explain the enhanced re-epithelialisation responses in epoxy-tiglianetreated skin & highlight their potential as novel therapeutics for impaired dermal wound healing situations.
- Further studies are elucidating the mechanisms by which epoxy-tiglianes induce these stimulatory effects.

References

1) Dong L et al. Anticancer agents from the Australian tropical rainforest: Spiroacetals EBC-23, 24, 25, 72, 73, 75 and 76. Chem Eur J (2009); 15:11307-18. 2) Boyle GM et al. Intra-lesional injection of the novel PKC activator EBC-46 rapidly ablates tumours in mouse models. PLoS One (2014); 9:e108887. 3) Yun-Shain L et al. Wound healing in development. Birth Defect Res, C Embryo Today (2012); 96:213-22.

4) Glim JE et al. Detrimental dermal wound healing: What can we learn from the oral mucosa? Wound Rep Regen (2013); 21:648-60.

В	Control vs					
	EBC-211,	EBC-211,	EBC-211,	EBC-211,	EBC-211,	
Gene	0.001 24h	0.001 48h	0.1 48h	10 24h	10 48h	
KRT13		6.9	5.6		4.7	
KRT15		5.4	3.8		5.6	
KRT9		2.8	2.4		2.2	
KRT81	2.5					
KRT16			-3.2	-3.0	-4.0	
KRT17		-2.3	-3.1	-3.0	-3.6	
KRT6B			-2.89		-3.7	
KRT17P3		-2.6	-3.3		-3.9	
Cyclin B2		3.8	4.2		3.8	
Cyclin A2		2.9	3.0		2.7	
Cyclin B1		2.7	2.7		2.7	
CDKN3		3.2	3.4		3.1	
CDKN1A				-2.8	-2.1	
MMP-1	4.1	6.0	4.7		6.2	
GINS2	2.5	3.1	3.1	2.3		
POLE2	2.19		2.0	2.3		
UBE2C		3.6	3.6		3.7	
PTHLH	2.7		2.6	2.9	2.3	
IL-6		-4.3	-5.4		-6.2	
IL-8		-2.8	-3.8	-3.2	-6.3	
IL-32		-4.6	-6.9		-7.3	
IFNB1	-3.3	-4.3	-5.1	-4.1	-4.4	

- Up-regulated genes included certain keratins (KRT9, KRT13, KRT15, KRT81), positive cell cycle & proliferation regulatory genes (CCNB2, CDKN3, CDCA7, GINS2, KIAA0101); & proteinases (MMP-1, MMP-7, MMP-10).
- Down-regulated genes included other keratin (KRT6B, KRT16, KRT17) & cytokines (e.g. IL-6, IL-8, IL-32).

This study is funded by QBiotics Ltd., Queensland, Australia & the Cardiff Institute of Tissue Engineering & Repair (CITER), Cardiff University, UK. This work is covered by filed patent, **WO2014169356.**

We wish to acknowledge & thank Professor Rachel Errington, Dr Rachel Howard-Jones & Marie Wiltshire, School of Medicine, Cardiff University, for their help & advice in performing the FACS analysis.