

School of Dentistry / Yr Ysgol Ddeintyddiaeth

Modulatory Effects of Novel Epoxy-Tiglianes on Dermal Fibroblast-Myofibroblast Wound Healing Responses **Mediate Their Enhanced Anti-Scarring Properties**

Jordanna Dally¹, Rachael L. Moses¹, Adam C. Midgley², Rachel Howard-Jones³, Rachel J. Errington⁴, Paul W. Reddell⁵, Robert Steadman², Ryan Moseley¹

¹Stem Cells, Wound Repair & Regeneration Group, Cardiff Institute of Tissue Engineering & Repair (CITER), Oral & Biomedical Sciences (OBS), School of Dentistry, College of Biomedical & Life Sciences, Cardiff University, UK. ²Institute of Nephrology, CITER, School of Medicine, College of Biomedical & Life Sciences, Cardiff University, UK. ³Mineralized Tissue Group, CITER, OBS, School of Dentistry, College of Biomedical & Life Sciences, Cardiff University, UK. ⁴Institute of Cancer & Genetics, CITER, School of Medicine, College of Biomedical & Life Sciences, Cardiff University, UK. ⁵QBiotics Ltd., Yungaburra, Queensland, Australia.

Introduction

- The novel epoxy-tiglianes, 12-tigloyl-13-(2-methylbutanoyl)-6,7-epoxy-4,5,9,12,13,20hexahydroxy-1-tigliane-3-one (EBC-46) and a less active related compound, 12tigloyl-13-(2-methylbutanoyl)-5,6-epoxy-4,5,9,12,13,20-hexahydroxy-1-tigliane-3-one (EBC-211), occur within seeds of the Fontain's Blushwood Tree, indigenous to Queensland's tropical rainforest¹.
- EBC-46 is currently being developed as an anti-cancer agent by Australian biotechnology company, Qbiotics (www.qbiotics.com/), for the intra-lesional treatment of cutaneous & sub-cutaneous tumours in humans & animals².

Results

Effects of EBC-211 on Fibroblast Proliferation & Viability

In veterinary clinical trials, exceptional dermal wound healing responses, characterised by accelerated re-epithelialisation, closure & reduced scarring, have been consistently observed following tumour ablation by EBC-46².

Deep necrosing facial wound that had been unresponsive to 3 months treatment with current standards of veterinary wound care, resolved following treatment with EBC-46.

- This suggests that EBC-46 & EBC-211 could offer treatments that abrogate normal & excessive dermal scarring (fibrosis), evident during clinical situations such as burn injuries, surgical / non-surgical lacerations & hypertrophic / keloid scarring.
- Indeed, as existing clinical therapies are acknowledged to be unsatisfactory for use in the prevention or attenuation of excessive scar formation, there is a huge clinical need to develop effective therapies which arrest or prevent fibrosis³⁻⁴.

Effects of EBC-46 on Fibroblast Cell Cycle at T29 (Average +/- SE, N=3)

Effects of EBC-211 on Fibroblast Cell Cycle at T29 (Average +/- SE, N=3)

Full-thickness burn

Surgical laceration

Examples of clinical conditions associated with normal or excessive scarring (fibrosis), which could benefit from the development of anti-scarring therapies, such as EBC-46 & EBC-211.

Hypertrophic scar

Aims & Objectives

Oro-facial scar

As fibroblasts are pivotal to dermal healing responses, wound closure & scarring, fibroblasts & the scar-forming myofibroblasts represent viable targets for the anti-fibrotic properties of epoxy-tiglianes. Therefore, this study examined the effects of EBC-46 & the lesser active analogue (EBC-211), on fibroblast proliferation, migration & transforming growth factor- β_1 (TGF- β_1)-driven fibroblast-myofibroblast differentiation *in vitro*.

Materials & Methods

Primary Dermal Fibroblasts

Serum-starvation (24h)

DMEM, antibiotics, L-glutamine (2mM)

0 μg/mL (+TGF-β₁)

0.1 μg/mL

Effects of EBC-46 on Myofibroblast Differentiation (+TGF- β_1)

EBC-46 & EBC-211 significantly delay dermal fibroblast progression through the cell cycle, supporting the MTT proliferation data (above).

0 µg/mL (-TGF-β₁)

0.01 µg/mL

EBC-46 significantly inhibited α -SMA stress fibre formation at 0.1 µg/mL only, with cells retaining normal unstimulated fibroblast dermal morphology.

0.001 µg/mL

1 µg/mL

 α -SMA Expression in EBC-46-Treated Fibroblasts (+TGF- β_1)

stress fibre formation at 10 µg/mL only, retaining with cells normal unstimulated fibroblast dermal morphology.

 α -SMA Expression in EBC-211-Treated Fibroblasts (+TGF- β_1)

EBC-46 and EBC-211 significantly inhibited α-SMA gene expression at 0.1 µg/mL & 10 µg/mL, respectively.

Conclusions

- Both EBC-46 & EBC-211 significantly inhibit fibroblast proliferative responses & TGF- β_1 driven, fibroblast-myofibroblast differentiation in vitro.
- EBC-46 & EBC-211 have no significant effects on scratch wound repopulation.
- Therefore, findings suggest that epoxy-tiglianes primarily induce anti-scarring responses by attenuating fibroblast proliferation & TGF- β_1 -driven, myofibroblast differentiation; & highlight the potential of epoxy-tiglianes as novel therapeutics for excessive dermal scarring & fibrosis.

• Further studies are elucidating the mechanisms by which epoxy-tiglianes induce these anti-scarring effects.

1) Dong L et al. Anticancer agents from the Australian tropical rainforest: Spiroacetals EBC-23, 24, 25, 72, 73, 75 and 76. Chem Eur J (2009); 15:11307-18. 2) Boyle GM et al. Intra-lesional injection of the novel PKC activator EBC-46 rapidly ablates tumours in mouse models. PLoS One (2014); 9:e108887 3) Gauglitz et al. Hypertrophic scarring and keloids: Pathomechanisms; and current and emerging treatment strategies. Mol Med (2011); 17:113-25. 4) Editorial. Anti-scarring pharmaceuticals: Lost in translation? Wound Rep Regen (2014); 22:293-4.

This study is funded by QBiotics Ltd., Queensland, Australia & Sêr Cymru (Life Sciences Research Network Wales), Cardiff, UK. This work is covered by filed patent, **WO2014169356.**